
GraphQL for Delphi introduction

What is GraphQL?
GraphQL is a modern way to build HTTP APIs consumed by the web and mobile clients. It is

intended to be an alternative to REST and SOAP APIs (even for existing applications).

From GraphQL itself:

GraphQL is a query language for your API, and a server-side runtime

for executing queries by using a type system you define for your data.

GraphQL isn't tied to any specific database or storage engine and is

instead backed by your existing code and data.

GraphQL provides a standard way to:

describe data provided by a server in a statically typed Schema;

request data in a Query which exactly describes your data requirements; and

receive data in a Response containing only the data you requested.

GraphQL was developed internally by Facebook in 2012 before being publicly released in 2015.

Learn more about GraphQL language at https://graphql.org/learn/.

About GraphQL for Delphi
GraphQL for Delphi is an implementation of GraphQL specification for Delphi.

GraphQL request is validated and executed by GraphQL server with the schema of the GraphQL

service and a GraphQL document which contains the operations.

GraphQL for Delphi supports Delphi 10 Seattle and later versions up to the most recent one.

Features

Below is a list of exists GraphQL for Delphi features and GraphQL specification elements covered.

Full GraphQL document parser with support to:

Full spec-compliant document lexer;

Executable documents and type definition documents;

Operations;

Selection sets;

Fields;

Arguments;

Field aliases;

Fragments (including inline and type conditions);

Input values;

•

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

GraphQL for Delphi 1.4 Page 1 of 21

https://graphql.org
https://graphql.org
https://graphql.org/learn/
https://graphql.org
https://spec.graphql.org
https://en.wikipedia.org/wiki/Delphi_(software)
https://spec.graphql.org/October2021/
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Helpers/TASTDocumentHelper/Parse.html
https://spec.graphql.org/October2021/#sec-Language.Source-Text
https://spec.graphql.org/October2021/#sec-Document
https://spec.graphql.org/October2021/#sec-Type-System
https://spec.graphql.org/October2021/#sec-Language.Operations
https://spec.graphql.org/October2021/#sec-Selection-Sets
https://spec.graphql.org/October2021/#sec-Language.Fields
https://spec.graphql.org/October2021/#sec-Language.Arguments
https://spec.graphql.org/October2021/#sec-Field-Alias
https://spec.graphql.org/October2021/#sec-Language.Fragments
https://spec.graphql.org/October2021/#sec-Input-Values

All types supported (Int, String, Object, etc.);

Variables;

Type references (List, Non-Null);

Directives.

GraphQL schema supporting the following types:

Query and Mutation root types;

Scalars: Int, Float, String, Boolean and ID;

Objects, field arguments and field deprecation;

Interfaces;

Unions;

Enums;

Input objects;

List types;

Non-null types;

Directives, including @skip, @include and @deprecated.

Full Introspection support;

Full Validation support;

Spec-compliant GraphQL document execution (*)

Execute a GraphQL document based on a schema and retrieve results;

Execution strictly following GraphQL specification;

Skip/include directives handling;

Fragments;

Selection set execution;

Variables;

Fields and variables values coercion;

Field resolvers and abstract type resolvers;

Proper error handling in response with precise error location and extensions;

Automatic field resolver binding using RTTI.

GraphQL over HTTP:

GraphQL HTTP handler compliant to upcoming GraphQL over HTTP specification;

WebBroker dispatcher component:

Support for Windows and Linux servers (**);

Deploy with Apache, IIS, FastCGI, Standalone (***);

Automatic JSON serialization/deserialization.

GraphQL Playground IDE built-in:

Execute queries and debug your GraphQL server from web easily by enabling

GraphQL Playground;

Fully customizable (light/dark theme, title, etc.).

Fully extensible:

Abstract HTTP request/response allows using the GraphQL HTTP handler with any

Delphi HTTP framework;

Inheritable schema types allows creating your GraphQL types, including scalars.

Extensive documentation including full API reference.

Supports from Delphi 10 Seattle up to the latest available Delphi version.

Platforms support: Windows, Linux, macOS, Android and iOS.

Premium support.

(*) Unsupported features still under work: type extensions and subscriptions.

◦

◦

◦

◦

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

•

•

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

◦

◦

▪

▪

◦

•

◦

◦

•

◦

◦

•

•

•

•

GraphQL for Delphi 1.4 Page 2 of 21

https://spec.graphql.org/October2021/#sec-Int-Value
https://spec.graphql.org/October2021/#sec-String-Value
https://spec.graphql.org/October2021/#sec-Input-Object-Values
https://spec.graphql.org/October2021/#sec-Language.Variables
https://spec.graphql.org/October2021/#sec-Type-References
https://spec.graphql.org/October2021/#sec-Language.Directives
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Query.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Mutation.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaIntType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaFloatType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaStringType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaBooleanType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaIDType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaObjectType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaInterfaceType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaUnionType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaEnumType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaInputObjectType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaListType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaNonNullType/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDirectiveDefinition/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Validator/TGraphQLValidator/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Executer/TGraphQLExecuter/index.html
https://spec.graphql.org/October2021/#sec-Execution
https://spec.graphql.org/October2021/#sec-Executing-Selection-Sets
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaField/Resolver.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaInterfaceType/Resolver.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Response/TGraphQLResponse/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Bind.html
https://github.com/graphql/graphql-over-http/blob/main/spec/GraphQLOverHTTP.md
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.WebBroker/TGraphQLWebBrokerDispatcher/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Http.Handler/TGraphQLHttpOptions/PlaygroundEnabled.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Http.Handler/TGraphQLHttpOptions/PlaygroundEnabled.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Http.Playground/TGraphQLPlaygroundOptions/index.html

(**) Linux support requires Delphi Enterprise with Linux compiler.

(***) Functionality provided by WebBroker technology itself.

Documentation Topics
Please refer to the following topics in this documentation. This guide is also available as PDF at

graphql-user-guide.pdf and as Microsoft Compiled HTML Help at graphqldoc.chm.

In this section:

Getting started

Getting started with GraphQL for Delphi.

Schema

Understanding GraphQL schema and creating a schema document.

Release Notes

List of releases, new features added and bugs fixed.

Breaking Changes

Information about breaking changes introduced by released.

Copyright Notice

Copyright information about this library.

GraphQL for Delphi 1.4 Page 3 of 21

https://doc.tmssoftware.com/biz/graphql/graphql-user-guide.pdf
https://doc.tmssoftware.com/biz/graphql/graphqldoc.chm

Getting started
In this article, we will walk you through the basics of installing GraphQL for Delphi and creating a

GraphQL server with it.

Installation
You can use GraphQL for Delphi starting in Delphi 10 Seattle and up to the latest Delphi versions.

GraphQL for Delphi is distributed and supported by TMS Software.

You can refer to the Download page to find the links to download installer for GraphQL for

Delphi for your specified Delphi version:

GraphQL for Delphi Download Page

Installation is pretty straightforward, just download and run the installer.

GraphQL for Delphi is also available in GetIt. Go to Delphi menu option Tools | GetIt Package

Manager... and search for graphql . Select GraphQL for Delphi from the list of available filtered

packages and click "Install".

Creating a Hello World GraphQL server
Once you have installed GraphQL for Delphi, you can build your first Hello World GraphQL

server, using the following tutorial.

1. Create a new WebBroker-based web application

Choose Delphi menu option File -> New -> Other... ;

Select Delphi -> Web category, and then double click option Web Server Application ;

Follow the wizard, choosing Stand-alone GUI Application as WebBroker project type

and VCL application as application type;

Once finished, the wizard will create a project with two units: FormUnit1 and

WebModuleUnit1 .

2. Define your GraphQL schema

Open data module WebModule1 in unit WebModuleUnit1 ;

Drop the component TGraphQLSchema in the data module.

Using object inspector, edit the Definition property and paste the following text:

•

•

•

•

•

•

•

type Query {

 hello(name: String!): String

}

GraphQL for Delphi 1.4 Page 4 of 21

https://www.tmssoftware.com/site/graphql.asp
https://getitnow.embarcadero.com/graphql-for-delphi/
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Comp.Schema/TGraphQLSchema/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Comp.Schema/TGraphQLSchema/Definition.html

3. Setting up the field resolver

Still in the object inspector, double click the OnInitSchema event;

Paste the following implementation in the new created event handler:

4. Adding the WebBroker dispatcher

Drop the component TGraphQLWebBrokerDispatcher in the data module;

Double click the Schema property of the component to associate the dispatcher to the

previously added TGraphQLSchema component;

Set property Options.PlaygroundEnabled to True .

5. Running and testing the GraphQL server

Your GraphQL server is now ready to run.

Run the server, and then click the Open Browser function (or simply use your web

browser to navigate to url http://localhost:8080 .

The browser should open the GraphQL Playground IDE. Using the editor at the left side,

type the following query:

Click the Play button in the middle of the screen, and you should get the server response

at the right editor:

Congratulations! You have built your first GraphQL server using Delphi!

Bookshelf server: a more complex example
Let's create a sample Bookshelf application to put all pieces together.

•

•

procedure TWebModule1.GraphQLSchema1InitSchema(Sender: TObject; Schema: TSchemaDo

cument);

begin

 Schema.SetResolver('Query', 'hello', function(Args: TFieldResolverArgs): TValue

 begin

 Result := 'Hello, ' + Args.GetArgument('name').AsString;

 end

);

end;

•

•

•

•

•

query {

 hello(name: "World")

}

•

{

 "data": {

 "hello": "Hello, World"

 }

}

GraphQL for Delphi 1.4 Page 5 of 21

https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Comp.Schema/TGraphQLSchema/OnInitSchema.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/SetResolver.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TFieldResolverArgs/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TFieldResolverArgs/GetArgument.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.WebBroker/TGraphQLWebBrokerDispatcher/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.WebBroker/TGraphQLWebBrokerDispatcher/Schema.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Comp.Schema/TGraphQLSchema/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Http.Handler/TGraphQLHttpOptions/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Http.Handler/TGraphQLHttpOptions/PlaygroundEnabled.html

1. Create a new Web Server Application using File ->

New -> Other... dialog.

Choose Stand-alone GUI Application as WebBroker project type and VCL application as

application type.

2. Create new unit GraphQL.Bookshelf.pas with resolvers

implementation.

For demo purposes we are not using any database, only simple TList<T> instances. Use the

following code as the full unit source code.

 unit GraphQL.Bookshelf;

 interface

 uses

 Generics.Collections,

 GraphQL.Main,

 GraphQL.Schema;

 type

 TBook = class;

 TAuthor = class

 private

 FId: Integer;

 FName: string;

 function GetBooks: TArray<TBook>;

 public

 constructor Create(AName: string);

 property Books: TArray<TBook> read GetBooks;

 property Id: Integer read FId;

 property Name: string read FName;

 end;

 TBook = class

 private

 FId: Integer;

 FName: string;

 FAuthorId: Integer;

 function GetAuthor: TAuthor;

 public

 constructor Create(AName: string; AAuthorID: Integer);

 property Id: Integer read FId;

 property Name: string read FName;

 property Author: TAuthor read GetAuthor;

 end;

GraphQL for Delphi 1.4 Page 6 of 21

 TMutation = class

 public

 function CreateAuthor(Name: string): TAuthor;

 function CreateBook(Name: string; AuthorID: Integer): TBook;

 end;

 TQuery = class

 function Books: TArray<TBook>;

 function Authors: TArray<TAuthor>;

 Function Book(id: Integer): TBook;

 function Author(id: Integer): TAuthor;

 end;

 implementation

 var

 Counter: Integer;

 BookList: TObjectList<TBook>;

 AuthorList: TObjectList<TAuthor>;

 { TBook }

 constructor TBook.Create(AName: string; AAuthorID: Integer);

 begin

 inherited Create;

 FName := AName;

 FAuthorID := AAuthorID;

 FId := Counter;

 Inc(Counter);

 end;

 function TBook.GetAuthor: TAuthor;

 var

 I: Integer;

 begin

 Result := nil;

 for I := 0 to AuthorList.Count - 1 do

 if AuthorList[I].Id = Self.FAuthorId then

 begin

 Result := AuthorList[I];

 Break;

 end;

 end;

 { TMutation }

 function TMutation.CreateAuthor(Name: string): TAuthor;

 begin

 Result := TAuthor.Create(Name);

 try

 AuthorList.Add(Result)

 except

GraphQL for Delphi 1.4 Page 7 of 21

https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Add.html

 Result.Free;

 raise;

 end;

 end;

 function TMutation.CreateBook(Name: string; AuthorID: Integer): TBook;

 begin

 Result := TBook.Create(Name, AuthorID);

 try

 BookList.Add(Result)

 except

 Result.Free;

 raise;

 end;

 end;

 { TAuthor }

 constructor TAuthor.Create(AName: string);

 begin

 inherited Create;

 FName := AName;

 FId := Counter;

 Inc(Counter);

 end;

 function TAuthor.GetBooks: TArray<TBook>;

 var

 I: Integer;

 Books: TList<TBook>;

 begin

 Books := TList<TBook>.Create;

 try

 for I := 0 to BookList.Count - 1 do

 if BookList[I].FAuthorId = Self.Id then

 Books.Add(BookList[I]);

 Result := Books.ToArray;

 finally

 Books.Free;

 end;

 end;

 { TQuery }

 function TQuery.Author(id: Integer): TAuthor;

 var

 I: Integer;

 begin

 Result := nil;

 for I := 0 to AuthorList.Count - 1 do

 if AuthorList[I].Id = id then

GraphQL for Delphi 1.4 Page 8 of 21

https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Add.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Add.html

3. Configure the GraphQL Server application

Add GraphQL.Bookshelf to WebModuleUnit1 uses.

Open WebModuleUnit1 designer and drop TGraphQLSchema and TGraphQLWebBroker

Dispatcher components there.

In GraphQLWebBrokerDispatcher1 properties set Schema to our newly created

GraphQLSchema1 and Options.PlaygroundEnabled to True .

Copy full GraphQL schema definition into GraphQLSchema1.Definition property:

 begin

 Result := AuthorList[I];

 Break;

 end;

 end;

 function TQuery.Authors: TArray<TAuthor>;

 begin

 Result := AuthorList.ToArray;

 end;

 function TQuery.Book(id: Integer): TBook;

 var

 I: Integer;

 begin

 Result := nil;

 for I := 0 to BookList.Count - 1 do

 if BookList[I].Id = id then

 begin

 Result := BookList[I];

 Break;

 end;

 end;

 function TQuery.Books: TArray<TBook>;

 begin

 Result := BookList.ToArray;

 end;

 initialization

 Counter := 1;

 BookList := TObjectList<TBook>.Create(True);

 AuthorList := TObjectList<TAuthor>.Create(True);

 finalization

 BookList.Free;

 AuthorList.Free;

 end.

•

•

•

•

GraphQL for Delphi 1.4 Page 9 of 21

https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Comp.Schema/TGraphQLSchema/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.WebBroker/TGraphQLWebBrokerDispatcher/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.WebBroker/TGraphQLWebBrokerDispatcher/index.html

Set bindings between resolvers and GraphQL schema in TGraphQLSchema.OnInitSchema

handler:

4. Run and test the server

Now the GraphQL Server application is ready to use. Start the application, click Start button and

open http://localhost:8080/graphql/ in your browser. You should see GraphQL Playground

IDE and now you can perform queries to your GraphQL server.

Here are some query examples you can use:

 type Book {

 id: ID!

 name: String!

 author: Author!

 }

 type Author {

 id: ID!

 name: String!

 books: [Book!]!

 }

 type Query {

 author(id: ID!): Author

 book(id: ID!): Book

 books: [Book!]!

 authors: [Author!]!

 }

 type Mutation {

 createAuthor(name: String!): Author!

 createBook(name: String!, authorId: ID!): Book!

 }

•

 procedure TWebModule1.GraphQLSchema1InitSchema(Sender: TObject;

 Schema: TSchemaDocument);

 begin

 Schema.Bind('Query', TQuery);

 Schema.Bind('Mutation', TMutation);

 end;

GraphQL for Delphi 1.4 Page 10 of 21

https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/index.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Bind.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/Bind.html

create author, return author id

mutation {

 createAuthor(name: "Leo") {

 id

 }

}

create book, return book and author

mutation {

 createBook(name: "War and Peace", authorId: 1) {

 id

 author {

 name

 }

 }

}

return all books with authors

query {

 books {

 name

 author {

 id

 name

 }

 }

}

get author books using variables

query GetAuthor($id: ID!) {

 author(id: $id) {

 name

 books {

 id

 name

 }

 }

}

variables:

{

 "id": 1

}

GraphQL for Delphi 1.4 Page 11 of 21

GraphQL Schema
Your GraphQL server uses a schema to describe the shape of your available data. This schema

defines a hierarchy of types with fields that are populated from your back-end data stores. The

schema also specifies exactly which queries and mutations are available for clients to execute.

This article describes the fundamental building blocks of a schema and how to create a schema

using GraphQL for Delphi.

The schema definition language
The GraphQL specification defines a human-readable schema definition language (or SDL) that

you use to define your schema and store it as a string.

Here's a short example schema that defines two object types: Book and Author :

A schema defines a collection of types and the relationships between those types. In the example

schema above, a Book can have an associated author, and an Author can have a list of books.

Because these relationships are defined in a unified schema, client developers can see exactly

what data is available and then request a specific subset of that data with a single optimized

query.

Note that the schema is not responsible for defining where data comes from or how it's stored. It

is entirely implementation-agnostic.

Field definitions

Most of the schema types you define have one or more fields:

 type Book {

 id: ID

 name: String

 author: Author

 }

 type Author {

 id: ID

 name: String

 books: [Book]

 }

 # This Book type has two fields: name and author

 type Book {

 id: ID # record ID

 name: String # returns a String

 author: Author # returns an Author

 }

GraphQL for Delphi 1.4 Page 12 of 21

A field can return a list containing items of a particular type. You indicate list fields with square

brackets [], like so:

By default, it's valid for any field in your schema to return null instead of its specified type. You

can require that a particular field doesn't return null with an exclamation mark ! , like so:

These fields are non-nullable. If your server attempts to return null for a non-nullable field, an

error is thrown.

With a list field, an exclamation mark ! can appear in any combination of two locations:

If ! appears inside the square brackets, the returned list can't include items that are null.

If ! appears outside the square brackets, the list itself can't be null.

In any case, it's valid for a list field to return an empty list.

The Query type

The Query type is a special object type that defines all of the top-level entry points for queries

that clients execute against your server.

Each field of the Query type defines the name and return type of a different entry point. The

Query type for our example schema might resemble the following:

 type Author {

 id: ID

 name: String

 books: [Book] # A list of Books

 }

 type Author {

 id: ID! # Can't return null

 name: String! # Can't return null

 books: [Book]

 }

 type Author {

 id: ID! # Can't return null

 name: String! # Can't return null

 books: [Book!]! # This list can't be null AND its list *items* can't be

null

 }

•

•

•

 type Query {

 author(id: ID!): Author

 book(id: ID!): Book

 books: [Book!]!

 authors: [Author!]!

 }

GraphQL for Delphi 1.4 Page 13 of 21

This Query type defines four fields. author and book fields return a record of the

corresponding type by its id , books and authors fields return a list of the corresponding type.

With a REST-based API, this would probably be returned by different endpoints (e.g.,

/api/books , /api/authors , /api/books/:id , /api/authors/:id). The flexibility of GraphQL

enables clients to query both resources with a single request.

Structuring a query

Based on our example schema so far, a client could execute the following query, which requests

both a list of all book names and a list of all author names:

Our server would then respond to the query with results that match the query's structure, like so:

The Mutation type

The Mutation type is similar in structure and purpose to the Query type. Whereas the Query

type defines entry points for read operations, the Mutation type defines entry points for write

operations.

Each field of the Mutation type defines the signature and return type of a different entry point.

The Mutation type for our example schema might resemble the following:

 query GetBooksAndAuthors {

 books {

 name

 }

 authors {

 name

 }

 }

 {

 "data": {

 "books": [

 {

 "name": "War and Peace"

 },

 ...

],

 "authors": [

 {

 "name": "Leo Tolstoy"

 },

 ...

]

 }

 }

GraphQL for Delphi 1.4 Page 14 of 21

This Mutation type defines available mutations, createAuthor and createBook . createBook

mutation accepts a single argument (name) and returns a newly created Author object.

createBook mutation accepts two arguments (name and authorId) and returns a newly

created Book object.

Structuring a mutation

Like queries, mutations match the structure of your schema's type definitions. The following

mutation creates a new Author and requests certain fields of the created object as a return

value:

As with queries, our server would respond to this mutation with a result that matches the

mutation's structure, like so:

Resolvers
GraphQL Server needs to know how to populate data for every field in your schema so that it can

respond to requests for that data. To accomplish this, it uses resolvers.

A resolver is a function that's responsible for populating the data for a single field in your

schema. It can populate that data in any way you define, such as by fetching data from a back-

end database or a third-party API.

 type Mutation {

 createAuthor(name: String!): Author!

 createBook(name: String!, authorId: ID!): Book!

 }

 mutation CreateBook {

 createAuthor(name: "Leo Tolstoy") {

 id

 name

 }

 }

 {

 "data": {

 "createAuthor": {

 "id": 1,

 "name": "Leo Tolstoy",

 }

 }

 }

GraphQL for Delphi 1.4 Page 15 of 21

Defining Resolvers

Let's say our server defines the schema described above. We want to define resolvers for Query ,

Mutation , Author , Book and their fields.

GraphQL for Delphi library can map GraphQL schema definition onto Delphi class structure.

Those resolvers definitions look like this:

type

 TBook = class;

 TAuthor = class

 private

 FId: Integer;

 FName: string;

 function GetBooks: TArray<TBook>;

 public

 constructor Create(AName: string);

 property Books: TArray<TBook> read GetBooks;

 property Id: Integer read FId;

 property Name: string read FName;

 end;

 TBook = class

 private

 FId: Integer;

 FName: string;

 FAuthorId: Integer;

 function GetAuthor: TAuthor;

 public

 constructor Create(AName: string; AAuthorID: Integer);

 property Id: Integer read FId;

 property Name: string read FName;

 property Author: TAuthor read GetAuthor;

 end;

 TMutation = class

 public

 function CreateAuthor(Name: string): TAuthor;

 function CreateBook(Name: string; AuthorID: Integer): TBook;

 end;

 TQuery = class

 public

 function Books: TArray<TBook>;

 function Authors: TArray<TAuthor>;

 function Book(id: Integer): TBook;

 function Author(id: Integer): TAuthor;

 end;

GraphQL for Delphi 1.4 Page 16 of 21

GraphQL for Delphi 1.4 Page 17 of 21

Release Notes

Version 1.4 (Jan-2024)
New: Delphi 12 support.

New: Added support for TMS Sparkle, allowing to create GraphQL servers using

Sparkle instead of Web Broker.

New: Added support for type extensions in GraphQL parser.

Improved: New TFieldResolverArgs.Arguments property provides information about the

field arguments.

Improved: Responses are being cached for increased performance.

Improved: Improved performance for retrieval of introspection information from the

server.

Fixed: Empty lists were being rejected for non-null lists.

Version 1.3 (Apr-2022)
New: TSchemaDocument.OnGlobalCreate event allows for registration of custom types in

schema document, especially scalar types.

Improved: Bookshelf demo updated showing how to create custom scalar types in

GraphQL schema.

Version 1.2 (Mar-2022)
Fixed: Validation issue when parameter types were input lists.

Version 1.1 (Feb-2022)
New: TGraphQLExecuter.Current property.

Version 1.0 (Feb-2022)
First release.

•

•

•

•

•

•

•

•

•

•

•

•

GraphQL for Delphi 1.4 Page 18 of 21

https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TFieldResolverArgs/Arguments.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Schema/TSchemaDocument/OnGlobalCreate.html
https://doc.tmssoftware.com/biz/graphql/api/GraphQL.Executer/TGraphQLExecuter/Current.html

Breaking Changes
List of changes in each version that breaks backward compatibility from a previous version.

No breaking changes so far.

GraphQL for Delphi 1.4 Page 19 of 21

Copyright Information

Main Copyright
Unless in the parts specifically mentioned below, all files in this distribution are copyright (c)

tmssoftware.com and licensed under the terms detailed in the file license.rtf.

GraphQL for Delphi 1.4 Page 20 of 21

Download
GraphQL for Delphi is distributed and supported by TMS Software. For detailed information

about support, downloads, licensing, editions, and, in summary to get answers to any questions

you might have regarding GraphQL for Delphi, you can refer to the link below:

GraphQL for Delphi official page at TMS Software

GraphQL for Delphi installer download links
You can use GraphQL for Delphi starting in Delphi 10 Seattle and up to the latest Delphi versions.

It has two different distributions: Free Edition and the Registered Edition.

You can download the installers for Free Edition right away from GraphQL for Delphi download

page. Alternatively you can click the following download links directly:

Delphi 12 Athens

Delphi 11 Alexandria

Delphi 10.4 Sydney

Delphi 10.3 Rio

Delphi 10.2 Tokyo

Delphi 10.1 Berlin

Delphi 10 Seattle

Just download and run the installer for the Delphi version you use.

GraphQL for Delphi is also available in GetIt. Go to Delphi menu option Tools | GetIt Package

Manager... and search for graphql . Select GraphQL for Delphi from the list of available filtered

packages and click "Install".

Installers for Registered Edition are made available directly from customer area of TMS Software

web site. You can purchase a Registered Edition license directly from the GraphQL for Delphi

page at TMS Software. The page also provides a comparison table displaying the differences

between the Free Edition and Registered Edition.

•

•

•

•

•

•

•

GraphQL for Delphi 1.4 Page 21 of 21

https://www.tmssoftware.com
https://www.tmssoftware.com/site/graphql.asp
https://www.tmssoftware.com/site/graphql.asp
https://www.tmssoftware.com/site/graphql.asp#product-downloads
https://www.tmssoftware.com/site/graphql.asp#product-downloads
https://download.tmssoftware.com/business/graphql/download/tmsgraphql12.zip
https://download.tmssoftware.com/business/graphql/download/tmsgraphql11.zip
https://download.tmssoftware.com/business/graphql/download/tmsgraphqlsydney.zip
https://download.tmssoftware.com/business/graphql/download/tmsgraphqlrio.zip
https://download.tmssoftware.com/business/graphql/download/tmsgraphqltokyo.zip
https://download.tmssoftware.com/business/graphql/download/tmsgraphqlberlin.zip
https://download.tmssoftware.com/business/graphql/download/tmsgraphqlseattle.zip
https://getitnow.embarcadero.com/graphql-for-delphi/
https://www.tmssoftware.com/site/graphql.asp
https://www.tmssoftware.com/site/graphql.asp

	GraphQL for Delphi introduction
	Getting started
	Installation
	Creating a Hello World GraphQL server
	1. Create a new WebBroker-based web application
	2. Define your GraphQL schema
	3. Setting up the field resolver
	4. Adding the WebBroker dispatcher
	5. Running and testing the GraphQL server

	Bookshelf server: a more complex example
	1. Create a new Web Server Application using File -> New -> Other... dialog.
	2. Create new unit GraphQL.Bookshelf.pas with resolvers implementation.
	3. Configure the GraphQL Server application
	4. Run and test the server

	GraphQL Schema
	The schema definition language
	Field definitions
	The Query type
	Structuring a query

	The Mutation type
	Structuring a mutation

	Resolvers
	Defining Resolvers

	Release Notes
	Version 1.4 (Jan-2024)
	Version 1.3 (Apr-2022)
	Version 1.2 (Mar-2022)
	Version 1.1 (Feb-2022)
	Version 1.0 (Feb-2022)

	Breaking Changes
	Copyright Information
	Main Copyright

	Download

